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Architectures

In this chapter

Hardware architectures:

i From simple logic to multi-core CPUs

ir Concurrency on different levels

Software architectures:

i Languages of Concurrency

iz Operating systems and libraries
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Logic - the basic building blocks
Controllable Switches & Ratios

as ]
transistors, relays, vacuum tubes, valves, etc

First transistor
John Bardeen and Walter Brattain 1947

Strandbeest
Theo Jansen 1990

) Diffe}ee Engine
a Charles Babbage 1822

i, e i L3
Antikythera Mechanism
Greek 150-100BC-
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Architectures

Logic - the basic building blocks for digital computers
Constructing logic gates — for instance NAND in CMOS:
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Architectures

Logic - the basic building blocks for digital computers
Constructing logic gates — for instance NAND in CMOS:

’;Q ... and subsequently all other logic gates:
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Logic - the basic building blocks
Half adder: Full adder:
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Architectures

Logic - the basic building blocks
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Processor Architectures

A simple CPU

y e Decoder/Sequencer
Can be a machine in itself which breaks CPU

instructions into concurrent micro code.

e Execution Unit/ Arithmetic-Logic-Unit (ALU)
A collection of transformational logic.

* Memory

* Registers
Instruction pointer, stack pointer,
general purpose and specialized registers

e Flags
Indicating the states of the
latest calculations.

. e Code/Data management

Fetching, Caching, Storing

© 2020 Uwe R. Zimmer, The Australian National University page 652 of 758 (chapter 9: “Architectures” up to page 746)



Architectures

Processor Architectures

Interrupts

Code management ]

Decoder
Sequencer

e One or multiple lines wired
directly into the sequencer

= Required for:
Pre-emptive scheduling, Timer driven actions,
Transient hardware interactions, ...

> Usually preceded by an external logic
(“interrupt controller”) which accumu-
lates and encodes all external requests.

On interrupt (if unmasked):

e CPU stops normal sequencer flow.

e Lookup of interrupt handler’s address

e Current IP and state pushed onto stack.
e [P setto interrupt handler.
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Program

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables

© 2020 Uwe R. Zimmer, The Australian National University page 655 of 758 (chapter 9: “Architectures” up to page 746)




TR R e

Architectures

Interrupt processing
Interrupt handler

Program

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt handler

I?r_o_g_r_a_n_]________________________—_ PC > Push registers
4 | |Declare local variables

>

- SP—>
Local
variables

Registers

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt processing

Interrupt handler

Program Push registers

Declare local variables
Run handler code
do some I/0
or run some time
critical code

- SP—>
Local
variables

Registers

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt processing

Interrupt handler

Program Push registers

Declare local variables
Run handler code
do some I/0
or run some time
critical code

Registers

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt processing

Interrupt handler

Program Push registers

Declare local variables
Run handler code
do some I/0
or run some time
critical code
Remove local variables
-+ PC >|Pop registers

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt processing

Interrupt handler

Program Push registers

Declare local variables
Run handler code
do some I/0
or run some time
critical code
Remove local variables
PC >| Pop registers

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables

Bahia Honda Rail Bridge (
ShareAlike 3.0, Photography by MrX at English Wikipedia)
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Program

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Program

—
Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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The CPU
hardware (!)

did that,
e before anything
Local variables : was Changed

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt handler

Program — PC > Push registers

l_'_'_'_'_'_'_'_'_'_'_'__'_é_' | | Declare local variables

- SP—>
Local
variables

(

' Registers

| Flags
PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt processing

Interrupt handler

Program Push registers

Declare local variables
Run handler code
do some I/0
or run some time
critical code

Local

| variables

' Registers

l Flags
PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Program

Registers

Flags
PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Interrupt handler

Push registers
Declare local variables
Run handler code
do some I/0
or run some time
critical code
PC > Remove local variables

Context

Parameters

Global variables
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Program

>
Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Interrupt handler

Push registers
Declare local variables
Run handler code
do some I/0
or run some time
critical code
Remove local variables
PC >| Pop registers

Context

Parameters

Global variables
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Interrupt handler

Program

Push registers
Declare local variables
Run handler code
do some I/0
or run some time
critical code

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Program

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Program

Scratch
registers
Flags
PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Program

Interrupt handler

— PC>|Clear interrupt flag

P i ____ | | (Adjust priorities)

(Re-enable interrupt)

registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt handler

Program Clear interrupt flag

| | (Adjust priorities)
| | (Re-enable interrupt)
! Push other registers

pc > Declare local variables

variables

Registers

Scratch
registers
Flags
PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers

. | Declare local variables
variables | PC > Run handler code

do some I/0
Scratch or.rgn some time
registers critical code

Flags
PC

Registers

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt handler

Program

Clear interrupt flag
| | (Adjust priorities)

| | (Re-enable interrupt)

| Push other registers

: Declare local variables
i | Run handler code
I

|

I

|

do some I/0

or run some time

critical code
Remove local variables
. pc >| Pop other registers

Scratch
registers
Flags
PC

=
Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Architectures

Interrupt processing

Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code

do some I/0

- SP—> .. Or run some time
Scratch L

registers Crltlcal COde ..

Flags Remove local variables

e “ Pop other registers
Local variables Return (be 1r.n>

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Architectures

Interrupt processing
Interrupt handler

Program Clear interrupt flag

(Adjust priorities)
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code

do some I/0

or run some time

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Interrupt handler

Things to consider

= Interrupt handler code can be interrupted as well.

i Are you allowing to interrupt an interrupt handler with an
interrupt on the same priority level (e.g. the same interrupt)?

i Can you overrun a stack with interrupt handlers?
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Architectures

Interrupt handler

Things to consider

= Interrupt handler code can be interrupted as well.

i Are you allowing to interrupt an interrupt handler with an
interrupt on the same priority level (e.g. the same interrupt)?

i Can you overrun a stack with interrupt handlers?

> Can we have one of those?
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Multiple programs

If we can execute interrupt handler code
“concurrently” to our “main” program:

ir Can we then also have multiple “main” programs?
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Process 1

Code Stack @

Context-
switch-
variables

Registers

Flags

Local variables

PC

Return address

Local variables

Context

Return address

Parameters

Context

Local variables

Parameters

Return address

Local variables

Context

Return address

Parameters

Context

Global variables

Parameters
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Context switch
Dispatcher

Process 1 Process 2

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context
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Dispatcher

Process 1

Push registers ‘

Code Stack @ Code Stack @
- SP—>

Context- Context-
switch- switch-
variables - variables

Registers Registers

Flags Flags
PC ) o PC

Local variables Local variables

Return address Return address

Context Context

Parameters Parameters

Local variables Local variables

Return address - Return address

Context - Context

Parameters Parameters

Global variables Global variables
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Process 1

Code

Stack
- SP

—_

ata

—PC >

>

Context-
switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Push registers
Declare local variables
Store SP to PCB 1
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Stack

4

Context-
switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables




Process 1

Code

Stack
- SP

—_

ata

Dispatcher

Push registers
Declare local variables
Store SP to PCB 1

— PC > Scheduler

>

Context-
switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Context-
switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables

Context switch
Dispatcher

Push registers
Declare local variables
Store SP to PCB 1
Scheduler

_)>Load SP from PCB 2

Process 2

Code
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Process 1
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Context-
switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables

Context switch
Dispatcher

Push registers

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2

- pc >/ Remove local variables

Process 2
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Process 1

Context-
switch-
variables

- PC >

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables
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Context switch
Dispatcher

Push registers

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2
Remove local variables
Pop registers

Process 2
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Process 1

Code
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Context-
switch-
variables

Registers

Flags

PC

Local variables

Return address

Context

Parameters

Local variables

Return address

Context

Parameters

Global variables

Context switch
Dispatcher

Push registers

Declare local variables
Store SP to PCB 1
Scheduler

Load SP from PCB 2
Remove local variables

Process 2
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Processor Architectures

Pipeline
Code management| < ||

Some CPU actions are naturally sequential
(e.g. instructions need to be first loaded, then
Sequencer decoded before they can be executed).

More fine grained sequences can
be introduced by breaking CPU
instructions into micro code.

i Overlapping those sequences in time
will lead to the concept of pipelines.

1> Same latency, yet higher throughput.

i (Conditional) branches
might break the pipelines
i Branch predictors become essential.
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Processor Architectures

Parallel pipelines

Filling parallel pipelines
(by alternating incoming commands between
pipelines) may employ multiple ALU’s.

i (Conditional) branches might
again break the pipelines.

i Interdependencies might limit
the degree of concurrency.

i Same latency, yet even higher throughput.

1 Compilers need to be aware of the options.
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Processor Architectures

Out of order execution

Breaking the sequence inside each pipe-

line leads to ‘out of order’ CPU designs.
I

i Replace pipelines with hardware scheduler.

i Results need to be
“re-sequentialized” or possibly discarded.

i “Conditional branch prediction” executes
the most likely branch or multiple branches.

i Works better if the presented code
sequence has more independent
instructions and fewer conditional branches.

i This hardware will require (extensive)
code optimization to be fully utilized.

page 693 of 758 (chapter 9: “Architectures” up to page 746)
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Processor Architectures

SIMD ALU units

Provides the facility to apply the same in-

struction to multiple data concurrently.
Also referred to as “vector units”.
— |

Examples: Altivec, MMX, SSE[2[3]4], ...
i Requires specialized compilers

or programming languages with
implicit concurrency.

GPU processing

Graphics processor as a vector unit.

. i Unifying architecture languages are

used (OpenCL, CUDA, GPGPU).

page 694 of 758 (chapter 9: “Architectures” up to page 746)
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Processor Architectures

Hyper-threading

Emulates multiple virtual CPU cores
by means of replication of:
.-

* Register sets

e Sequencer
* Flags

Registers

Interrupt logic

while keeping the “expensive” resources
like the ALU central yet accessible by
multiple hyper-threads concurrently.

i Requires programming languages with
implicit or explicit concurrency.

Examples: Intel Pentium 4, Core i5/i7, Xeon,

Atom, Sun UltraSPARC T2 (8 threads per core)
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 Decoder |

Sequencer

Data management l.J E

Processor Architectures

Multi-core CPUs

Full replication of multiple CPU cores
on the same chip package.

e Often combined with hyper-thread-
ing and/or multiple other means (as
introduced above) on each core.

e Cleanest and most explicit implementation
of concurrency on the CPU level.

i Requires synchronized atomic operations.
i Requires programming languages with
implicit or explicit concurrency.

Historically the introduction of multi-core
CPUs ended the “GHz race” in the early 2000’s.

© 2020 Uwe R. Zimmer, The Australian National University
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Processor Architectures

Virtual memory

': Translates logical memory addresses
—_— into physical memory addresses
‘ | and provides memory protection features.

* Does not introduce concurrency by itself.

= Is still essential for concurrent programming
as hardware memory protection
guarantees memory integrity for
individual processes / threads.

Data management [
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Alternative Processor Architectures: Parallax Propeller

Pin Directions

Pin Qutputs
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Alternative Processor Architectures: Parallax Propeller (2006)

Pin Directions

Pin Qutputs
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Alternative Processor Architectures: IBM Cell processor (2001)
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Multi-CPU systems
Scaling up:

e Multi-CPU on the same memory

multiple CPUs on same motherboard and mem-
ory bus, e.g. servers, workstations

* Multi-CPU with high-speed interconnects
various supercomputer architectures, e.g. Cray XE6:

e 12-core AMD Opteron, up to 192 per cabinet (2304 cores)

e 3D torus interconnect (160 GB/sec cap-
acity, 48 ports per node)

e Cluster computer (Multi-CPU over network)

multiple computers connected by network interface,

e.g. Sun Constellation Cluster at ANU:

e 1492 nodes, each: 2x Quad core Intel Nehalem, 24 GB RAM
e QDR Infiniband network, 2.6 GB/sec
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Vector Machines
Buzzword collection:
. . AltiVec, SPE, MMX, SSE,
Vectorization NEON, SPU, AVX, ...
X a-‘x
av=a-|ly|=|a-y Translates into ’
Z a-z CPU-level vector operations

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

function Scale (Scalar : Real; Vector : Vectors) return Vectors is
Scaled_Vector : Vectors (Vector’Range);

begin
for 1 in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (1i);
end loop; Combined with
return Scaled_Vector; in-lining, loop unrolling and caching
end Scale; ) this is as fast as a single CPU will get.
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Vector Machines
l '\
C , Vectorization
X a-x
av=a-ly|l=la-y
Z a‘*”Z Function is

”promoted”
const Index = {1 .. 100000000},

Vector_1 : [Index] real = 1.0,

Scale : real = 5.1,
Scaled : [Vector] real = Scale * Vector_1;

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations
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Vector Machines
Reduction
X1 X9
Vi = Vo 2| Y1 | = (V2| = (X1 = Xo) N (V1 = Y2) N (Z1 = Zy)
Z Z9

type Real is digits 15;
type Vectors 1is array (Positive range <>) of Real;

function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.
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P Vector Machines
C_;/ Reduction
X1 X2
VIi= V=2 Y| = (V2| = (X1 = X)) A (Y1 = Y2) N (24 = 2)
Z1 Z)
const Index = {1 .. 100000000}, /\_Operations are

Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool
{return && reduce (vl == v2);}

evaluated in a concurrent
divide-and-conquer
(binary tree) structure.

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

Function is
”promoted”
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Vector Machines

General Data-parallelism

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask x P [i -1 .. 1 +1, Jj-1..3+1D;}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);
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Vector Machines

C_;/ General Data-parallelism

Cellular automaton transitions from a state S into the next state S”
S > 8 © Vec&E S:c— c = 1S,c) i.e.all cells of a state
transition concurrently into new cells by following a rule 1.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

John Conway’s Game of Life rule:
proc Rule (S, (i, j) : index (World)) : Cell {
const Population : index ({@ .. 9}) =
+ reduce Count (Cell.Alive, S[i -1 ..1+1, J-1..3+11D);

return (if Population ==
|| (Population == 4 & & S [i, j] == Cell.Alive) then Cell.Alive
else Cell.Dead);

}
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Operating Systems

What is an operating system?
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What is an operating system?

1. A virtual machine!

... offering a more comfortable and safer environment

(e.g. memory protection, hardware abstraction, multitasking, ...)
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Architectures

What is an operating system?

1. A virtual machine!

... offering a more comfortable and safer environment

environment

Hardware Hardware Hardware
Typ. general OS Typ. real-time system Typ. embedded system
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What is an operating system?

2. A resource manager!

... coordinating access to hardware resources
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What is an operating system?

2. A resource manager!

... coordinating access to hardware resources

Operating systems deal with

processors

memory

mass storage
communication channels

devices (timers, special purpose processors, peripheral hardware, ...

i and tasks/processes/programs which are applying for access to these resources!
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The evolution of operating systems

* in the beginning: single user, single program, single task, serial processing - no OS

e 50s: System monitors / batch processing
i the monitor ordered the sequence of jobs and triggered their sequential execution

* 50s-60s: Advanced system monitors / batch processing:
> the monitor is handling interrupts and timers
i first support for memory protection
i first implementations of privileged instructions (accessible by the monitor only).

e early 60s: Multiprogramming systems:
> employ the long device I/O delays for switches to other, runable programs

e early 60s: Multiprogramming, time-sharing systems:
1= assign time-slices to each program and switch regularly

e early 70s: Multitasking systems — multiple developments resulting in UNIX (besides others)

o early 80s: single user, single tasking systems, with emphasis on user interface or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

* mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)
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The evolution of communication systems

e 1901: first wireless data transmission (Morse-code from ships to shore)

e ‘56: first transmission of data through phone-lines

e ‘62: first transmission of data via satellites (Telstar)

* ‘69: ARPA-net (predecessor of the current internet)

e 80s: introduction of fast local networks (LANs): ethernet, token-ring

¢ 90s: mass introduction of wireless networks (LAN and WAN)

Current standard consumer computers might come with:

High speed network connectors (e.g. GB-Ethernet)

Wireless LAN (e.g. IEEE802.11g, ...)

Local device bus-system (e.g. Firewire 800, Fibre Channel or USB 3.0)
Wireless local device network (e.g. Bluetooth)

Infrared communication (e.g. [rDA)

Modem/ADSL
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Architectures

Types of current operating systems
Personal computing systems, workstations, and workgroup servers:

* late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

e 80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

i last 20 years: evolving and expanding into current general purpose OSs, like for instace:
e Solaris (based on SVR4, BSD, and SunOS)
e LINUX (open source UNIX re-implementation for x86 processors and others)
e current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
* MacOS X (Mach kernel with BSD Unix and a proprietary user-interface)

e Multiprocessing is supported by all these OSs to some extent.
e None of these OSs are suitable for embedded systems, although trials have been performed.

* None of these OSs are suitable for distributed or real-time systems.

© 2020 Uwe R. Zimmer, The Australian National University page 715 of 758 (chapter 9: “Architectures” up to page 746)



Architectures

Types of current operating systems

Parallel operating systems

e support for a large number of processors, either:

e symmetrical: each CPU has a full copy of the operating system
or

e asymmetrical: only one CPU carries the full operating system, the others are
operated by small operating system stubs to transfer code or tasks.
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Types of current operating systems

Distributed operating systems

all CPUs carry a small kernel operating system for communication services.
all other OS-services are distributed over available CPUs

* services may migrate

e services can be multiplied in order to

e guarantee availability (hot stand-by)
e or toincrease throughput (heavy duty servers)
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Types of current operating systems

Real-time operating systems

e Fast context switches?

e Small size?

* Quick response to external interrupts?
e Multitasking?

* ‘low level’ programming interfaces?

* Interprocess communication tools?

e High processor utilization?
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Types of current operating systems

Real-time operating systems

i

should be fast anyway

%

should be small anyway

not ‘quick’, but predictable

o Muttitasking? often, not always

e “Yowlevelprogramminginterfaces? needed in many operating systems

* Interprocesscommunicationtools? needed in almost all operating systems
* Highprocessorutitization? fault tolerance builds on redundancy!
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Types of current operating systems

Real-time operating systems need to provide...
i the logical correctness of the results as well as

i the correctness of the time, when the results are delivered

= Predictability! (not performance!)

i All results are to be delivered just-in-time — not too early, not too late.

Timing constraints are specified in many different ways ...
... often as a response to ‘external’ events
i reactive systems
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Types of current operating systems

Embedded operating systems

e usually real-time systems, often hard real-time systems
e very small footprint (often a few KBs)
e none or limited user-interaction

= 90-95% of all processors are working here!
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What is an operating system?

Is there a standard set of features for operating systems?
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Architectures

What is an operating system?
Is there a standard set of features for operating systems?

1= NO:
the term ‘operating system’ covers 4 kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.
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What is an operating system?

Is there a standard set of features for operating systems?

1= NO:
the term ‘operating system’ covers 4 kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?
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What is an operating system?
Is there a standard set of features for operating systems?

1= NO:
the term ‘operating system’ covers 4 kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

iz almost:

memory management, process management and inter-process communication/synchronisation

will be considered essential in most systems
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What is an operating system?
Is there a standard set of features for operating systems?

=" NO:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

iz almost:

memory management, process management and inter-process communication/synchronisation

will be considered essential in most systems

Is there always an explicit operating system?
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What is an operating system?
Is there a standard set of features for operating systems?

1= NO:
the term ‘operating system’ covers 4 kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

iz almost:

memory management, process management and inter-process communication/synchronisation

will be considered essential in most systems

Is there always an explicit operating system?

= NOo:

some languages and development systems operate with standalone runtime environments
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Typical features of operating systems

Process management:

e Context switch
e Scheduling

* Book keeping (creation, states, cleanup)

iz cohtext switch:

iz needs to...

* ‘remove’ one process from the CPU while preserving its state
* choose another process (scheduling)

* ‘insert’ the new process into the CPU, restoring the CPU state

Some CPUs have hardware support for context switching, otherwise:

1= use interrupt mechanism
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Typical features of operating systems

Memory management:

o Allocation / Deallocation

e Virtual memory: logical vs. physical addresses, segments, paging, swapping, etc.
e Memory protection (privilege levels, separate virtual memory segments, ...)
e Shared memory

Synchronisation / Inter-process communication

e semaphores, mutexes, cond. variables, channels, mailboxes, MPI, etc. (chapter 4)
i tightly coupled to scheduling / task switching!

Hardware abstraction

e Device drivers
o API
* Protocols, file systems, networking, everything else...
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Typical structures of operating systems

Monolithic

(or ‘the big mess...")

* non-portable

hard to maintain

lacks reliability
e all services are in the kernel (on the same privilege level)

i but: may reach high efficiency

Monolithic

e.g. most early UNIX systems,
MS-DOS (80s), Windows (all non-NT based versions)
MacQOS (until version 9), and many others...
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Typical structures of operating systems

Monolithic & Modular

* Modules can be platform independent

e Easier to maintain and to develop

e Reliability is increased

* all services are still in the kernel (on the same privilege level)

> may reach high efficiency

Hardware
Modular

e.g. current Linux versions
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Typical structures of operating systems

Monolithic & layered

e easily portable
e significantly easier to maintain

e crashing layers do not necessarily stop the whole OS
e possibly reduced efficiency through many interfaces T ele=

LSS o A S

* rigorous implementation of the stacked virtual machine

perspective on OSs

Layered

e.g. some current UNIX implementations (e.g. Solaris) to a certain de-
gree, many research OSs (e.g. “THE system’, Dijkstra ‘68)
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Typical structures of operating systems

uKernels & virtual machines

e pkernel implements essential process,
memory, and message handling

e all’higher’ services are dealt with outside the
kernel = no threat for the kernel stability

e significantly easier to maintain

* multiple OSs can be executed
at the same time

e pkernel is highly hardware dependent Hardware

= only the pkernel needs to be ported. ukernel, virtual machine
* possibly reduced efficiency through

increased communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79)
or as recent as MacOS X (mach kernel + BSD unix), ...
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........

Typical structures of operating systems

uKernels & client-server models

e ukernel implements essential process,
memory, and message handling

e all’higher’ services are user level servers
e significantly easier to maintain

* kernel ensures reliable message passing
between clients and servers

* highly modular and flexible
e servers can be redundant and easily replaced

e possibly reduced efficiency through
increased communications

e.g. current research projects, L4, etc.

Hardware

pkernel, client server structure
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Typical structures of operating systems

uKernels & client-server models

e ukernel implements essential process,
memory, and message handling

e all’higher’ services are user level servers
e significantly easier to maintain

* kernel ensures reliable message passing
between clients and servers:
locally and through a network Network

* highly modular and flexible ukernel, distributed systems
e servers can be redundant and easily replaced

e possibly reduced efficiency through increased communications

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects
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UNIX

UNIX features

e Hierarchical file-system (maintained via ‘mount’ and ‘unmount’)

e Universal file-interface applied to files, devices (1/0), as well as IPC
e Dynamic process creation via duplication

e Choice of shells

e Internal structure as well as all APIs are based on ‘C’

» Relatively high degree of portability

i UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix, Mach,
Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux, OPEN-
STEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS, ... ....
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UNIX

Dynamic process creation
pid = fork ();

resulting a duplication of the current process

* returning 0 to the newly created process

e returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure
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UNIX

Dynamic process creation
pid = fork ();

resulting a duplication of the current process

* returning 0 to the newly created process

e returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure

Frequent usage:
if (fork () == 0) {
// ... the child’s task ... often implemented as:
exec (“absolute path to executable file“, “args“);

exit (0); /* terminate child process */
1 else {

//... the parent’s task ...
pid = wait (); /* wait for the termination of one child process */

}
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UNIX

Synchronization in UNIX = Signals

#include <unistd.h> id = fork ();
#include <sys/types.h> if (id == 0) {
#include <si 1.h>
Include <signa signal (SIGSTOP, catch_stop);
pid_t id;
pause ();
void catch_stop (int sig_num) exit (0):
{ } else {

/* do something with the signal */ Kill (id, SIGSTOP);:

pid = wait ();
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UNIX

Message passing in UNIX = Pipes

int data_pipe [2], c, rc;
} else { // parent

if (pipe (data_pipe) == -1) { .

perror (“no pipe“); exit (1); close (data_pipe [0]);
) while ((c = getchar ()) > 0) {
if (fork () == @) { // child S

(data_pipe[1], &c, 1) == -1) {
perror (“pipe broken“);

close (data_pipe [11);
while ((rc = read

(data_pipe [0]1, &c, 1)) >0) { clése (data_pipe [11);
putchar (c); exit (1);
3 ¥
if (rc == -1) { ) |
perror (“pipe broken®): close (data_pipe [1]);
pid = wait ();

close (data_pipe [0]); exit (1);}
close (data_pipe [0]); exit (Q); }
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UNIX

Processes & IPC in UNIX

Processes:

* Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

i inefficient, but can generate new tasks out of any user process — no shared memory!

Signals:
* limited information content, no buffering, no timing assurances (signals are not interrupts!)

i very basic, yet not very powerful form of synchronisation
Pipes:
* unstructured byte-stream communication, access is identical to file operations

= not sufficient to design client-server architectures or network communications
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UNIX

Sockets in BSD UNIX
Sockets try to keep the paradigm of a universal file interface for everything and introduce:
Connectionless interfaces (e.g. UDP/IP):

e Server side: socket ™ bind = recvfrom ™ close

e (Clientside: socket ™ sendto ™ close

Connection oriented interfaces (e.g. TCP/IP):

e Server side;: socket ™ bind ™ {select} [connect | listen =
accept ™ read | write = [close | shutdown]

e Client side: socket ™ bind ™ connect = write | read ™ [close | shutdown]
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POSIX

Portable Operating System Interface for Unix

e |EEE/ANSI Std 1003.1 and following.

e Library Interface (API)
[C Language calling conventions — types exit mostly in terms of
(open) lists of pointers and integers with overloaded meanings].

* More than 30 different POSIX standards (and growing / changing).
I a system is ‘POSIX compliant’, if it implements parts of one of them!

1= a system is “100% POSIX compliant, if it implements one of them!
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POSIX - some of the relevant standards...
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POSIX - 1003.1b/c

Frequently employed POSIX features include:

e Threads: a common interface to threading - differences to ‘classical UNIX processes’
e Timers: delivery is accomplished using POSIX signals

* Priority scheduling: fixed priority, 32 priority levels

e Real-time signals: signals with multiple levels of priority

* Semaphore: named semaphore

= Memory queues: message passing using named queues

e Shared Mmemory: memory regions shared between multiple processes

¢ Memory Iocking: no virtual memory swapping of physical memory pages
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Summary

Architectures

e Hardware architectures - from simple logic to supercomputers
e logic, CPU architecture, pipelines, out-of-order execution, multithreading, ...

e Data-Parallelism

e Vectorization, Reduction, General data-parallelism

e Concurrency in languages
e Some examples: Haskell, Occam, Chapel

e Operating systems
e Structures: monolithic, modular, layered, pkernels
e UNIX, POSIX
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